
quorum documentation
Release 0.5.12

Hive Solutions Lda.

Nov 02, 2017

Contents

1 Introduction 3
1.1 Goals and Focus . 3

2 Changelog 5
2.1 Current Versions . 5
2.2 Older Versions . 11

3 Configuration Variables 13
3.1 Global . 13
3.2 Mail / SMTP . 14
3.3 MongoDB . 14
3.4 Redis . 14
3.5 RabbitMQ / AMQP . 14
3.6 Amazon Web Services . 15
3.7 Pusher . 15

4 API Reference 17
4.1 quorum . 17
4.2 quorum.mongodb . 21

5 Glosary 23

6 Installation 25

7 Example 27

8 Indices and tables 29

i

ii

quorum documentation, Release 0.5.12

A small extension framework for Flask to easy a series of simple tasks.

Contents 1

quorum documentation, Release 0.5.12

2 Contents

CHAPTER 1

Introduction

1.1 Goals and Focus

The focus of this project was...

3

quorum documentation, Release 0.5.12

4 Chapter 1. Introduction

CHAPTER 2

Changelog

List the complete set of changes to the quorum project since it’s creation.

2.1 Current Versions

2.1.1 0.5.12

• Fixed AMQP issues

2.1.2 0.5.11

• Small legacy fixes

2.1.3 0.5.10

• Small fixes in form loading

2.1.4 0.5.9

• Better ACL structure

2.1.5 0.5.8

• ACL security fix

5

quorum documentation, Release 0.5.12

2.1.6 0.5.7

• Small Mime bug fixes

2.1.7 0.5.6

• Some ACL bug fixes

2.1.8 0.5.5

• New namespace based ACL

2.1.9 0.5.4

• New compatibility layer with models

2.1.10 0.5.3

• Fixed issue with new version of Jinja 2

2.1.11 0.5.2

• Support for multiple indexes

2.1.12 0.5.1

• Some bug fixes for indexes

2.1.13 0.5.0

• Improved overall stability

• Added support for more indexes in Mongo

2.1.14 0.4.15

• Small set of fixes

2.1.15 0.4.14

• Small set of fixes in RabbitMQ to AMQP migration

2.1.16 0.4.13

• Renamed RabbitMQ to AMQP

6 Chapter 2. Changelog

quorum documentation, Release 0.5.12

2.1.17 0.4.12

• Removed extra print statements

2.1.18 0.4.11

• New model structure

• Fixed issues with locales

2.1.19 0.4.10

• New configuration infra-structure

2.1.20 0.4.9

• Fixed another build issue

2.1.21 0.4.8

• Fixed issue with deployment

2.1.22 0.4.7

• New dump all support in typesf

2.1.23 0.4.6

• Fixed issue related with locales

2.1.24 0.4.5

• Support for locales in exceptions

2.1.25 0.4.4

• Fixed major bug with file type

2.1.26 0.4.3

• Lots of bug fixes

• Better export of database

2.1. Current Versions 7

quorum documentation, Release 0.5.12

2.1.27 0.4.2

• Better structure for map based models

2.1.28 0.4.1

• Better resolution of models

2.1.29 0.4.0

• Small set of issue fixes

2.1.30 0.3.22

• Fixed major issue

2.1.31 0.3.21

• Major changes in data layer

2.1.32 0.3.20

• Fixed memory leak

2.1.33 0.3.19

• Fixed issue in xls conversion

2.1.34 0.3.18

• Better xls conversion

• Minor bug fixes

2.1.35 0.3.17

• Better persistence model

• Minor bug fixes

2.1.36 0.3.16

• New map like access support for models

8 Chapter 2. Changelog

quorum documentation, Release 0.5.12

2.1.37 0.3.15

• Fixed issue with filtering

2.1.38 0.3.14

• New support for travis

2.1.39 0.3.13

• Fixed bug related with http client

2.1.40 0.3.12

• Fixed bug related with email sending

2.1.41 0.3.11

• Bug fix related with async based redirection

2.1.42 0.3.10

• Compatibility fixes

2.1.43 0.3.9

• Compatibility fixes

• Support for new pymongo interface

2.1.44 0.3.8

• Better email address support with format

2.1.45 0.3.7

• Support for model duplicate attribute validation

2.1.46 0.3.6

• New support for session file path definition

2.1.47 0.3.5

• Better configuration overriding

2.1. Current Versions 9

quorum documentation, Release 0.5.12

2.1.48 0.3.4

• Fixed problem in http naming collision

2.1.49 0.3.3

• New handler retrieval function

2.1.50 0.3.2

• Refactor of the configuration infra-structure

2.1.51 0.3.1

• Fix in legacy support

2.1.52 0.3.0

• Major code re-structure

• New Apache based license

2.1.53 0.2.6

• New set of bug fixes

• Fixed issue in memory based log

2.1.54 0.2.5

• Support for new HTTP client

2.1.55 0.2.4

• Major bug fix with count fixed

2.1.56 0.2.3

• Improved overall stability of the system

2.1.57 0.2.2

• Improved the email structure

10 Chapter 2. Changelog

quorum documentation, Release 0.5.12

2.1.58 0.2.1

• Minimal stability improvements

2.1.59 0.2.0

• Initial support for Python 3.0+

• More stability in the infra-structure

2.1.60 0.1.8

• New support for quorum.exists_amazon_key() and quorum.clear_amazon_bucket() calls

• Better unit testing for amazon.py

• Support for the SERVER_* environment variables

2.1.61 0.1.7

• Better signature for quorum.send_mail()

• Improved asynchronous mode under quorum.send_mail_a()

• New support for quorum.delete_amazon_key() calls

2.1.62 0.1.6

• Support for Amazon S3 using boto

• Experimental documentation

2.2 Older Versions

2.2.1 0.1.5

• Initial support for mongodb

2.2.2 0.1.4

• Legacy support values

2.2.3 0.1.3

• Legacy support values

2.2.4 0.1.1

• Legacy support values

2.2. Older Versions 11

http://docs.pythonboto.org/

quorum documentation, Release 0.5.12

2.2.5 0.1.0

• Initial release

• First specification of the framework

12 Chapter 2. Changelog

CHAPTER 3

Configuration Variables

3.1 Global

.. NAME:: string (default = None)
String that is going to be used to identify the app for the internal structures a fallback value should be defined
by the developer of the app.

.. INSTANCE:: string (default = None)
The descriptive value of the instance that is going to be executed. This value should provide the required
mechanisms to correctly separate to virtually different running instance (eg: databases, log files, etc.).

.. LEVEL:: string (default = ”INFO”)
Defines the verbosity level that is going to be used while running the application’s logger. It also provides a way
of defining if the application is running for production where production is INFO or more verbose levels.

.. DEBUG:: boolean (default = False)
If the application should be ran under the run mode.

Note: This variable is considered to be deprecated and the LEVEL variable should be used instead with the
DEBUG level set.

.. PORT:: integer (default = 5000)
The port to be used by the default http server when binding to the socket.

Note: The PORT value is not used when running in contained WSGI.

.. HOST:: string (default = ”127.0.0.1”)
The port to be used by the default http server when binding to the socket. This value may be 0.0.0.0 in case the
user want to bind to every interface on the system (may be insecure).

13

quorum documentation, Release 0.5.12

Note: The HOST value is not used when running in contained WSGI.

3.2 Mail / SMTP

.. SMTP_HOST:: string
Hostname or IP address of the server to be used as gateway for sending smtp messages (e-mails) under quorum.

This value may contain an optional port value separated by a ‘:’ character.

.. SMTP_USER:: string
Username to be used in the authentication process on the SMTP connections used for sending email messages.

Note: Most of the times the username is an email address and as such it’s also used as the default fallback value
for the sender value for outgoing emails.

.. SMTP_PASSWORD:: string
Password to be used in the authentication process on the SMTP connections used for sending email messages.

3.3 MongoDB

.. MONGOHQ_URL:: string
The url to be used for the establishment of connection to the MongoDB server. It must contain authentication
information, host, port and optionally the default database to be used.

Note: An example url for mongo would be something like mongodb://root:root@db.hive:27017.

3.4 Redis

.. REDISTOGO_URL:: string
The URL that described the connection to be used with the REDIS key value database, this URL is going to be
used under the redis-py infra-structure.

Note: An example url for rabbit would be something like redis://root:root@db.hive.

3.5 RabbitMQ / AMQP

.. AMQP_URL:: string
URL used by the AMQP library (pika) to create the connection with the server that is going to be used in the
session. It should contain both authentication and location information.

Note: An example url for amqp would be something like amqp://root:root@amqp.hive.

14 Chapter 3. Configuration Variables

quorum documentation, Release 0.5.12

3.6 Amazon Web Services

.. AMAZON_ID:: string
Identifier of the Amazon S3 account to be sued for the connection, this should comply with the expected string
values.

.. AMAZON_SECRET:: string
The secret value of the account to be used, this value should be kept secret from any external person to avoid
security problems.

.. AMAZON_BUCKET:: string
The name of the bucket where file of the current application are going to be stored. Currently there’s no support
for multiple buckets per one application scope.

3.7 Pusher

.. PUSHER_APP_ID:: string
TODO

.. PUSHER_KEY:: string
TODO

.. PUSHER_SECRET:: string
TODO

3.6. Amazon Web Services 15

quorum documentation, Release 0.5.12

16 Chapter 3. Configuration Variables

CHAPTER 4

API Reference

4.1 quorum

4.1.1 Base

quorum.APP = None
The reference to the top level application object that is being handled by quorum. This value is used across the
quorum infra-structure to access flask data and capabilities.

Note: Changing this value directly should be done with care as it may create undesired results. To set/start this
value use the quorum.load() function instead.

quorum.load(app=None, name=None, locales=(‘en_us’,), secret_key=None, execution=True, re-
dis_session=False, mongo_database=None, logger=None, models=None, safe=False,
**kwargs)

Initial loader function responsible for the overriding of the flask loading system and for the loading of configu-
ration.

Note: This function should be called inside you main app file failure to do so may result in unexpected behavior.

Parameters

• app (Application) – The optional flask application object to be used in the loading of
quorum (useful for self managed apps).

• name (String) – The name to be used to describe the application for the management of
internal values.

• locales (List) – The list containing the various locale strings for the locales available
for the application to be loaded.

17

quorum documentation, Release 0.5.12

• secret_key (String) – The secret seed value to be used for cryptographic operations
under flask (eg: client side sessions) this value should be shared among all the pre-fork
instances.

• execution (bool) – Flag indicating if the (background) execution thread should be
started providing the required support for background tasks.

• redis_session (bool) – If the session management for the flask infra-structure should
be managed using a server side session with support from redis.

• mongo_database (String) – The default name of the database to be used when using
the mongo infra-structure.

• logger (String) – The name to be used as identification for possible logger files created
by the logging sub-module.

• models (Module) – The module containing the complete set of model classes to be used
by the data infra-structure (eg: mongo).

• safe (bool) – If the application should be run in a safe mode meaning that extra vali-
dations will be done to ensure proper execution, typically these kind of validations have a
performance impacts (not recommended).

Return type Application

Returns The application that is used by the loaded quorum environment in case one was provided
that is retrieved, otherwise the newly created one is returned instead.

quorum.unload()
Unloads the current quorum instance, after this call no more access to the quorum facilities is allowed.

A normal setup of the application would never require this function to be called directly.

Warning: Use this function with care as it may result in unexpected behavior from a developer point of
view.

Note: After the call to this method most of the functionally of quorum will become unavailable until further
call to quorum.load().

quorum.run_back(callable, args=[], kwargs={}, target_time=None, callback=None)
Runs the provided callable (function, method, etc) in a separated thread context under submission of a queue
system. It’s possible to control the runtime for the execution with the target_time argument and it’s also
possible to be notified of the end of the execution providing a callable to the callback parameter.

Warning: The execution is not guaranteed as the system process may be interrupted and resuming of the
execution would not be possible.

Parameters

• callable (Function) – The callable object to be called in a separated execution envi-
ronment.

• args (Dictionary) – The list of unnamed argument values to be send to the callable
upon execution.

• args – The dictionary of named argument values to be send to the callable upon execution.

18 Chapter 4. API Reference

quorum documentation, Release 0.5.12

• target_time (float) – The target timestamp value for execution, in case it’s not pro-
vided the current time is used as the target one.

• callback (Function) – The callback function to be called upon finishing the execution
of the callable, in case an error (exception) on executing the callback the error is passed as
error argument.

quorum.run_background(callable, args=[], kwargs={}, target_time=None, callback=None)
Runs the provided callable (function, method, etc) in a separated thread context under submission of a queue
system. It’s possible to control the runtime for the execution with the target_time argument and it’s also
possible to be notified of the end of the execution providing a callable to the callback parameter.

Warning: The execution is not guaranteed as the system process may be interrupted and resuming of the
execution would not be possible.

Parameters

• callable (Function) – The callable object to be called in a separated execution envi-
ronment.

• args (Dictionary) – The list of unnamed argument values to be send to the callable
upon execution.

• args – The dictionary of named argument values to be send to the callable upon execution.

• target_time (float) – The target timestamp value for execution, in case it’s not pro-
vided the current time is used as the target one.

• callback (Function) – The callback function to be called upon finishing the execution
of the callable, in case an error (exception) on executing the callback the error is passed as
error argument.

4.1.2 Mail / SMTP

quorum.send_mail(app=None, subject=’‘, sender=None, receivers=[], data=None, plain=None,
rich=None, context={}, encoding=’utf-8’, host=None, port=None, username=None,
password=None, stls=False, safe=True)

Sends an email message using the provided SMTP_HOST, SMTP_USER and SMTP_PASSWORD configurations.

The email message is sent under the alternative mime type so that both the plain text and the rich text
(html) parts are sent in the same message.

The plain and rich arguments allow the user to process a template with the context provided by the
context map.

Warning: This is a blocking call and as such the control flow may block for more that a second, if you
want a non blocking (asynchronous) call please use quorum.send_mail_a().

Parameters

• app (Application) – Optional application object to be used for the rendering operation
as the main object for flask. In case this value is not provided the global quorum.APP
value is used instead (fallback).

4.1. quorum 19

quorum documentation, Release 0.5.12

• subject (String) – The mime subject to be sent with this message, note that if this
value is not set many spam filters will consider the message as spam.

• sender (String) – The email (and name) of the sender of the email, in case this value is
not set the SMTP_USER variable is used instead.

• receivers (List) – The list of receivers (with email and name) for which the email will
be sent.

• data (String) – The buffer containing the data to be used for both the plain and the rich
text parts in case the template associated arguments are not set or in case the rendering is
not successful.

• plain (String) – Relative path to the plain text template to be used for the rendering of
the email, this path must be relative to the templates folder.

• rich (String) – Relative path to the rich text template to be used for the rendering of the
email, this path must be relative to the templates folder.

• context (Dictionary) – The map containing the complete set of variables that are
going to be “exposed” to the template rendering engine for both the plain and the rich.

• encoding (String) – The text encoding name that is going to be used in the mail that is
going to be sent, should be used with care.

• host (String) – The hostname for the connection of the smtp server that is going to be
used, this may be wither a domain of an address.

• port (int) – The tcp port number that is going to be used for the client connection with
the server.

• username (String) – Username value that is used for the authentication part of the
connection with the smtp server.

• password (String) – Secret password to be used as part of the authentication process
of the created smtp connection.

• stls (bool) – If the connection with the target smtp server should be made using a secure
mechanism of a plain text one.

• safe (bool) – If the current email message should be used using a safe strategy, meaning
that newline sequences will be made standard.

quorum.send_mail_a(*args, **kwargs)
Asynchronous call to the quorum.send_mail() function that is executed in a different thread from the
current one. The currently loaded queue system is used for the sending of the email, for more information check
on quorum.run_background() .

Note: The arguments to be send for this function are the same as the one present in the original quorum.
send_mail() function.

4.1.3 MongoDB

enumerate(sequence[, start=0])
Return an iterator that yields tuples of an index and an item of the

20 Chapter 4. API Reference

quorum documentation, Release 0.5.12

4.2 quorum.mongodb

quorum.mongodb.get_connection()

4.2. quorum.mongodb 21

quorum documentation, Release 0.5.12

22 Chapter 4. API Reference

CHAPTER 5

Glosary

BIOS A set of computer instructions in firmware that control input and output operations.

EPEL Common acronym for Extra Packages for Enterprise Linux. These are typically included in Fedora Linux,
and provided for RedHat, CentOS, and other RPM-based distributions. The project’s homepage is here: Fedo-
raProject:EPEL.

MAC Pronounced as “mack” and often used as a noun referring to a network device’s Media Access Controller
(MAC) address. A MAC address is a globally unique number assigned to each interface in an Ethernet network
and used to direct Ethernet frames between source and destination devices.

OSI Open Systems Interconnection (OSI) is an effort to develop standards-based computer networking protocols in
order to allow networking equipment from different vendors to interoperate without relying on implementation
of competing proprietary protocols. The OSI is best known for the development of the standard seven-layer OSI
model for describing layers of abstraction into which the various networking protocols are categorized.

POSIX An acronym for “Portable Operating System Interface”, is a family of standards specified by the IEEE for
maintaining compatibility between operating systems. POSIX defines the application programming interface
(API), along with command line shells and utility interfaces, for software compatibility with variants of Unix
and other operating systems. Read more here: Wikipedia:POSIX.

RFC The RFC documents (Request for Comments) are a series of Internet standards, best common practices, and
related documents describing how networked computers communicate. This document series provides the stan-
dards for how the Internet and many other related technologies interrelate and interoperate.

23

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://en.wikipedia.org/wiki/POSIX

quorum documentation, Release 0.5.12

24 Chapter 5. Glosary

CHAPTER 6

Installation

Install using setuptools, e.g. (within a virtualenv):

$ easy_install quorum

25

quorum documentation, Release 0.5.12

26 Chapter 6. Installation

CHAPTER 7

Example

import flask
import quorum

app = quorum.load(
name = __name__

)

@app.route("/", methods = ("GET",))
def index():

return flask.render_template("index.html.tpl")

if __name__ == "__main__":
quorum.run()

27

quorum documentation, Release 0.5.12

28 Chapter 7. Example

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

29

quorum documentation, Release 0.5.12

30 Chapter 8. Indices and tables

Index

A
AMAZON_BUCKET (directive), 15
AMAZON_ID (directive), 15
AMAZON_SECRET (directive), 15
AMQP_URL (directive), 14
APP (in module quorum), 17

B
BIOS, 23

D
DEBUG (directive), 13

E
enumerate() (built-in function), 20
EPEL, 23

G
get_connection() (in module quorum.mongodb), 21

H
HOST (directive), 13

I
INSTANCE (directive), 13

L
LEVEL (directive), 13
load() (in module quorum), 17

M
MAC, 23
MONGOHQ_URL (directive), 14

N
NAME (directive), 13

O
OSI, 23

P
PORT (directive), 13
POSIX, 23
PUSHER_APP_ID (directive), 15
PUSHER_KEY (directive), 15
PUSHER_SECRET (directive), 15

R
REDISTOGO_URL (directive), 14
RFC, 23
run_back() (in module quorum), 18
run_background() (in module quorum), 19

S
send_mail() (in module quorum), 19
send_mail_a() (in module quorum), 20
SMTP_HOST (directive), 14
SMTP_PASSWORD (directive), 14
SMTP_USER (directive), 14

U
unload() (in module quorum), 18

31

	Introduction
	Goals and Focus

	Changelog
	Current Versions
	Older Versions

	Configuration Variables
	Global
	Mail / SMTP
	MongoDB
	Redis
	RabbitMQ / AMQP
	Amazon Web Services
	Pusher

	API Reference
	quorum
	quorum.mongodb

	Glosary
	Installation
	Example
	Indices and tables

